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A quasiclassical method of  calculating the collisional rotational transition probabilities (CRTP) for diatomic mole- 
cules interacting with an impinging heavy particle was developed in [ 1, 2]. The CRTP obtained by this method were then 
used to calculate the kinetics of  the populations of  the rotational levels, which showed that it was possible in principle to 
obtain an inverse population on the rotational levels of  diatomic molecules in an adiabatically expanding gas [3]. In this 
connection it is of  interest to investigate the rotational transitions of  a water molecule colliding With an atom. This 
gives rise to the need for calculation of  the CRTP of triatomic molecules of  the asymmetric-top type. 

In this paper we calculate the CRTP of triatomic molecules, exemplified by theH 2 0  molecule, which interacts with 
an atom in three-dimensional space. For the calculation we use a quasiclassical method similar to that used in [ 1 ]. The 
essence of  the method is as follows. We calculate the trajectory of  motion of  the atom and molecule by the classical method 
and obtain the time dependence of  the perturbation operator, by averaging which over the rotational wave functions of  the 
initial and final states of  the molecule we find the collisional transition probability in the first approximation of  perturbation 
theory. To calculate the trajectory we use the spherically symmetric part of  the potential. The anisotropic part of the 
latter determines the selection rules and the probability. The conditions for applicability of  the quasiclassical method of  
calculating CRTP were discussed in [ 1] and reduce to the fulfillment of  two conditions: AE/E << 1, IKI < 1/2, where 
AE and K are, respectively, the energy and modulus of  the mafrix element of  the rotational transition; E is the kinetic 
energy of  the impinging particle. The first requirement determines the condition for classical calculation of the trajectory, 
and the second requirement is connected with the applicability of  the first approximation of  perturbation theory. In 
principle, when the velocities of  the colliding particles are high enough and the second requirement is not  fulfilled, higher- 
order perturbation theory can be used, as was suggested in [2], 

1. Wave Functions of  Molecu le -Atom System. The wave functions characterizing the states of  the molecu le -a tom 
system are found from a solution of  the Schr6dinger equation [4] 

~ = ~11~OTlOt, 

h~ 0 3 (1.1) 
/7 = h,/z [(h) -1 s + (t~) -1 ~ + (r~) L~] + V (R, 0~ * ,  ~, ~, V) 2~ 0R~, 

where I,~, I,n, /~ are the operators of  projection of  the angular momentum on the ~, ~, and f axes, directed along the 

principal axes of  the ellipsoid of  inertia of  the molecule (Fig. 1); I~, In, and I~ are the principal moments of  inertia of  the 

molecule; V(R, 0, q~, c~, ~, 7) is the molecu le -a tom interaction potential; R is the distance between the atom and the center 

of  mass of  the molecule; o~,/3, and "~ are the Eulerian angles, characterizing the position of  the system of coordinates ~, 7?, 
and ~', rigidly attached to the molecule, relative to the laboratory system of coordinates x, y, and z (Fig. 2); the angles 0, 
g5 characterize the direction of  the impinging atom relative to the laboratory system (Fig. 3);/a is the reduced mass of  the 

molecule and atom. 

The wave function characterizing the state of  the a tom-molecu le  system can be represented in the form of a super- 
position of  products of  the wave functions characterizing the spin of the molecule, and the wave function of a particle 
moving in direction 0, q~ (Fig. 3) relative to a molecule situated at the center of  the laboratory system: 

v = E c (i,,,~, k,,~ k_,, M, .tl t) ' 5 , , . , , . , _ ,  exp [~ (Ej, , , , ,_,  + E~) t/~] % 
j,m,J,M 

where j, m, k 1 , k l are the quantum numbers characterizing the rotational state of  the molecule in accordance with con- 

ventional notation [5]; J is the quantum number characterizing the angular momentum Jh o f  the molecule-part icle system; 
%,m,kl,k_l is fl function characterizing the spin of  the molecule; ELkrk_x is the rotational energy of  the molecule in a state 

determined by quantum numbers j, k 1 and k_~ ; Es is the energy of  relative rotation of  the system; T 1 is a wave function 

representing the relative motion of  the particles as the movement of  a particle of mass g in a centrally symmetric field V(R). 
This function characterizes the probability of  finding a particle with mass g in a state with particular J in the case where its 
kinetic energy is E. According to [6], it has the form 

T1 = "Y~/ko~ exp (ikoR cos 0)~ (1.2) 
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where k0 = V29E/h is the wave vector. The plane wave (1.2) can be expanded in terms of functions 

V~--~oh exp (ikoR cos O) = ~ 1 /n  (2J -? t) t ( % : . 0  - 

Here the square of  the modulus of  the coefficient o f  ~ .  j 0 in this expression determines, according to genera1 rules, the 

probability that a particle will have moment  J h. The angular dependence of  the wave function of a particle with fixed 
angular momentum Jh and its projection Mh on the axis is described by the spherical function YJM (0, q)). The fundamental 

asymmetric-top wave functions satisfy the equation 

/L~vj,~,~,.~_~ = ETj,~.~I,~_~, SL = ~ [ (h)  -~ L~ + (S~) -~ Z,~ + (S0 -~ Z,~] (1.3) 

and are usually represented as a linear combination of symmetric-top wave functions l/k> , which can be expressed in 
terms of generalized spherical functions [7] 

. / - 5 7 +  1 
] ]k> ~- V 7  O~h (cz, O, ~'). (1.4) 

The Hamiltonian [/~ and the commutat ion rules for operators ~,~, 7,~, L; are invariant to transformations of  

symmetry group D2 [6]. Hence, there are four types of nondegenerate levels corresponding to representations A, B~, B2, 

B3, and it is convenient to expand the asymmetric-top wave function not in terms of functions Ilk>, but by using functions 

tI,ik [61: 

-- ~ Din, o. ~F~= (Ij, k>+lj,--k>), ~ = - ~ ( [ j , k > - - { j ,  k>), ~f0 ~ j 

The types of  representations corresponding to functions ~jk are given in Table 1. 

Thus, using Table 1, we can construct the linear combination corresponding to the particular type of level: 

't~j,,~.~l.~ 1 = ~ gh~k,  (1.5) h 

by substituting which in Eq. (3), we obtain the system of equations 

~] {<~j~ {gr t ~jk,> - g~h~,} g~, = 0. ~, (1.6) 

The condition for solvability of this system reduces to a power equation for E. The roots of  the obtained equation give 
Ej, kx,k_l -- the asymmetric-top energy levels corresponding to momentum j. Substituting Ej,krk_ 1 in (1.6) and using the 

conditions ~ gh, [~= t , we can find the coefficients of  the expansion in (1.5). There is no need in principle to calculate 

the asymmetric-top energy levels, since they are tabulated in [5]. Some water molecule wave functions calculated in explicit 
form are given in Table 2. The system of rotational levels of water is shown in Fig. 4. 

2. Potential of Interaction of H20 Molecule and Atom. The water molecule, as is known, has symmetry characterized 

by the group C2v [7]. Owing to the identity of  the hydrogen atoms the interaction potential is not altered by rotation of 

the molecule through an angle 7r around the r7 axis and reflection in the ~'~ plane (Fig. 1). Hence, the angular part of  the 

potential will be represented by combinations of  generalized spherical functions invariant to these transformations. Reflection 
in the ~'r/plane can be represented as the result of  rotation through angle lr around the r/ axis followed by reflection in the 
~" plane. The first operation multiplies g'jk by ( - 1 )  k, while the second is equivalent to a change in the sign of k. Taking 
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TABLE 1 

k Type 

even odd B a 
o d d  even B. odd 
odd odd odd 

h 

even 
odd 
even 
odd 

Type 

g~ 
B, 
A 
Ba 

TABLE 2 

[ Bx:~lo=[t0>, 

1I r i j=tlB2: oo = ~-~(llt>+lt--t>), 

[Ba:~ox= ' 1, ~(l l t>--] t - - t>)  

A :~2o=0,374~-~(122> +12--2>)+0,9-8120), 

B a : ~ i =  ~---~([2t > ~-12--t>), 

~(12t>--12-1>), 

1 ~ , 
B~:T12= ~--~(1.2>--12--2)), 

A:~Foz=--0,93h--~l/~(122> +12--2>) +0,g688120> V~ 

TABLE 3 

I ~176 t I I I I 
] 8,3 23 I I I-0,,6 6 I 0,00 6 

3 23,675 tl,989 8,691 --2,5717 --2,733 --3,973 

into account the definition of  functionsl grik, we obtain (r;n : ~Irjh-+ xFj,_k. Whence it follows that the potential should be 

expressed in terms of  functions ~]~invariant to this transformation. Rotation through angle zr around the 7/ axis (symmetry 

C(2~) operation) leads to multiplication of  ~ik by ( - 1 )  n+k [6]: 

~ . h - ~  ~'~.-h (-- t) ~+~. 

Hence, in the expansion of  the potential only terms for which condition n + k is an even number is fulfilled are nonzero. 
When n and k are even, the term of the expansion corresponds to the type A representation, and if n and k are odd it 
corresponds to the type B 2 representation. 

To calculate the CRTP we need to assign a specific kind of  potential. To calculate the CRTP in this work we use 
a potential in the form of a sum of  repulsive exponential potentials. We assume here that the center of gravity of  the 
molecule coincides with the oxygen atom. We conduct the treatment in the Eulerian system of coordinates in the case 
where the impinging atom moves along the z axis (Fig. 5). 

Using the formulas for conversion between the systems of  coordinates (x, y, z) and (~, 7, [) we find the distances 
between the impinging atom and the asymmetric-top atoms, whose principal moments coincide with the ~, rL and ~ axes. 

In the case of  the water molecule these distances, accurate to ~(r/R) 2 are: r12 = R, rlx ~- R + r sin ~ sin (y -f- 52~ 

rx3 ~ R -t- r sin ~ sin ( , / - -  52 ~ , where r is the distance between the hydrogen and oxygen atoms in the molecule. The 

interaction potential is written accordingly in the form 

V(R, y, ]3) = e -xR {A u -~ Aa~ [exp (--xr  sin .[~'sin (y q- 52~ + exp (--~r sin 13 sin (y --  52~ (2.1) 

where A~2 and A u are the pre-exponential factors of the potentials of interaction of  the impinging atom with the molecule 

atoms. The potential (2.t) ,  as was to be expected, depends only on the two angles/3 and % since rotation around the 
axis through angle c~ does not alter the values of r~3 and r n . In accordance with the above, the expansion of  the potential in 

terms of  generalized spherical functions has the form 

306 



~" CITWI 
~ JSO 

~oo 

54r 

~2 

400 - 

200 - 

m 

-4-, 

54g - -  + 
4- 550  

4- 

/422 

42J 
33o +4~j 

/4..14 

027 ~ -- z'~.#O 

J 2 2  

J12 ~ + 

2 2 1  ~ +'Yoj 

2 7 r  �9 

202 

700  ~ 

v 

7- 

Fig. 4 

V(R'Y'~)~-e-XR{ A12+An 2 ~(-l)vC~]//'-~Zn+l==o;=o ~ Dn [ o,~ (o, ~, ~) + Do~,_~ (0, ~, ~)]}. 
(2.2) 

The coefficients of  the expansion are found from the formula 

C ; =  ; ,f' {exp [--  • sin [~ sin (y q- 52 ~ q- exp [--  • sin ~ sin (? - -  52~ Y~ ([~, ?) sin ~df~d?, (2.3) 
0 0 

where Y~(fl, 7) are normalized spherical functions. Forwor = 1 and 3 the nonzero coefficients were calculated from Eq. 

(2.3) on a computer and are given in Table 3. 

Thus, in the case where the impinging atom moves along the z axis the interaction potential is given by Eq. (2.2). 
If the atom moves relative to the laboratory system in a direction determined by angles 0, �9 (Fig. 3), the interaction po- 
tential can be found from expression (2.2), by using the known relation 

Do'~, (0, ,6', 7') ~ ~] D0~ (0, - -  0, --cI)) D~ (a, [~, ?). 
l 
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Taking into account Dot(0,--0,--q))= Y~ (0, ~) ] / /  2,-7~. 1' we obtain an expansion of the potential in-terms of 

functions characterizing the orientation of the atom and molecule relative to the laboratory system: 

V (R, O, O, a, f3, "7) ~ e-~m ~ o D 1 t A ~ - t - A n { C o - - c l [ r ~ , _ , (  ~ , t+  
1 1 I 1, -}- Dt,r-~) -l- Yl ,o (Do, t + Do,-1) -t- Y~,l (D1-1,1 + D-L~)] + 

2 '2 2 2 
+ Co [Y2,-~D~,o + Ye,-~DI,o + Y~,oD-~,o + Y~,zD-.2,o] + �9 �9 .}1. 

3. Matrix Elements of CRTP. The CRTP matrix element, found from Eq. (1.1) by using the expression for the 
wave function gJ of the system, in the first approximation of perturbation theory has the form 

K = - - - -  U < W * l V ( B i t ) , O ,  Og,~,fl ,  v ) lW>dt .  (3.1) 

As mentioned at the beginning of this paper, the time dependence of the radical part of the wavefunction of the molecule-  
atom systems can be found by using the classical equation of motion in the center-of-mass system 

t -~- ~ (dR/dt)  ~ ---- E --  V (B,  O, (b, ~, ~, ?) - -  J27z.2/2.uR2, (3.2) 

where E is the total energy; Jh is the angular momentum of the relative motion. According to [4], we can obtain an 
analytical solution of this equation if in Eq. (3.2) we substitute the principal spherically symmetric term of the expansion 
of potential (2.4), and replace the value of R in' the third term of the right-hand side of (3.2) by the effective value R c. 
As a result we obtain 

5V j 

Since the interaction potential is divided by the product of the radial and angular parts, we take expression (3.3) 
into account and find, accurate to the phase factor, 

i m) 
K = - -  - ~  • sh A A, (3.4) 

n ~ O / 9 ~ 0  
t t 

j,m,hl,h_l,J,M-~j' ,m' , h l , h _ l , J  r , M  r 

where 

S,rM = ~ ~ Y~MY, , , -zY : ,~ '  sin OdOdT; 
0 0 

A1 ~ +COAl 1 F "  2j + 1 ghgh' (n, j ', p, U ] ], k) V' t + (~,o -- 6k',o)2; 

(E , , - -  Ej,m,hl,h_l,J,M ) 
t ~ -  ~ J " m " h l ' k - - l ' J " M '  

Here gk and gk' are the coefficients of the expansion in (1.5) of the fundamental asymmetric-top wave functions for the 

upper and lower levels, respectively; (n, j ' ,  p, k' lJ, k) and (n, j ' ,  l, m' [], m) are the Clebsch-Gordan coefficients [7], 

which appear when the anisotropic part of the potential is averaged. The coefficients are nonzero only on condition that: 
k = k ' + p ; m  = m ' + l ; J  = J ' + n .  

The expression containing the Kronecker deltas 6k, o and 6k,,o takes into account the normalized coefficients of 
functions g'jk and ~o" The factor SjM appears when the interaction potential is averaged over the wave functions char- 

acterizing the relative rotation of the molecule and atom; the presence of factors Sj and (n, ]',l, m' [], m) is due, respectively, 
to the change in the angular momentum of the molecule and its projection. 
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The matrix element K corresponds to the rotational transition of the molecule from the state characterized by 
quantum numbers j, m, k 1 , k l to the state with quantum numbers j ' ,  m',  k ; ,  k'_,. In view of the law of conservation 

of angular momentum the relative rotation of the molecule and atom is simultaneously altered, which corresponds to a 
transition from the state with quantum numbers J and M to the state with quantum numbers J '  and M'. 

Averaging the anisotropic part of the potential over the wave functions determines the selection rules and the value 
of the angular part of the matrix element. 

As mentioned above, the terms of the potential expansion, which depend on angles a, N, 7, belong to symmetry 
types A and B 2. Since the potential terms corresponding to symmetry type A are fully symmetric, then on averaging 
them over the fundamental wave functions of the molecule the matrix elements are nonzero only for transitions A ~ A, 
BI +-~ B~, Bz +-, B~, Ba ++ Ba �9 Expansions of the direct products of B~_ with other irreducible representations of group 

D 2 will be: B~ x B~ = Ba, Ba X B2 = B~, A ~: B~ = B~. Hence, for potential terms possessing symmetry type B 2 the 

matrix elements for transitions B~ ++ Ba, A +-, B 2 are nonzero. Moreover, additional prohibitions on the transitions are 

imposed by the law of conservation of parity. It follows from the law of conservation of parity of a closed system that 

the numbers Aj = j '  - j and kJ = J '  - J, which characterize the change in state of the molecu le -a tom system, must have 

the same parity. 

When the potential is averaged over the spherical functions YJM (0, cb) a nonzero result is obtained when condition 

[4] is fulfilled: J + J '  + n is an even number. This means that terms of the potential expansion with odd (even) n deter- 
mine transitions with odd (even) AJ. Hence, the type A potential terms determine the transitions between levels of the 
same parity with Aj = 0, +2, +4 ..., and the type B 2 terms determine transitions with Aj = +1, +3, +5, ... between levels 

with different parity. Whence, in view of the selection rules obtained above, it follows that the positive levels do not com- 
bine with negative levels. 

4. Collisional Rotational Transition Probabilities. The CRTP can be found in a first approximation from expression 
(3.4) by leaving in it for the particular transition the principal terms of the expansion, which make the main contribution 
to the modulus of the matrix element of this transition. After averaging over the quantum numbers m and M we obtain 
the CRTP for the transitions j ~ j - Aj: 

P (], kl, k - l ,  ~ = ,~"T .;a~t.; • sh ~ A ' 

where 

s~j (a  + 1) (2: + 1) ~----'S~M (n, J ,  - -  l, ra' I ], m,) ~. 
m M 

The expressions for RiaJ and S aj and also the selection rules in the case Aj = 0, 1, 2 are given below jj , 

A] : O: Am A~,[ : O, SO R9 [ ~  ]z, - 9J ~ i,  .~ = ghgh' 

(@) ~ (@), (--) ~ (--), even  +~ even  , odd ~ odd; ; 

A i = l : ] + l - + ] ,  R~ ( CIAH ~ 

w h e r e  k q - t - + k ,  ., ~. A1..,, @C~ 11 } 2] @--'---3 "- - )J  " 

= 6k,,o ), (2] + ~) (2] + 2) I 1 + (5k,0 - -  ~ " 
a>o 

S ~ j ~ t . 4 5 . t 0 - ~ ;  A m = - - A M = 0 ,  4-~; 

(~-) ++ (@); (--)+-~ (--); even  +4- odd; 

A ] = 2 : ] + 2 - - , - ] ,  
k + 2 - + k ,  R~--  (2]+1) [C2S~._.~ 2 2 !.,-, . (2] -? 5) 'r "o j,. ~ ~- C2Sj,h.h_2 
1~,-+ k, 

where 

h>o (2] q- i) (2j @ 2) (2j -1- 3) (2j .q- 4) 3 

S~.h.h-.,.-- Z ghgh'{ (]-k-k  ') (]~----k) (-Oi:k---+ l) (Y ~-k ~ 2) [l ? 5 ~h'o--6~"'o)a] ll/=" 
h>o (21-1- t) (2] + 2) (2] -r- 3) (2j ~ 4) J ' 

S~j ~ 3.t.t0-'~; Am = --AM = 0,4-1, 4- 2;( ,-]-)+,-(q-);(--)+--,(--); 

even +-, even; odd ~-~ odd. Here gk and gk' are the coefficients in the wave-function expansions. The values of R ~ S], and 

S? for some transitions are given in Table 4. 
a 

To calculate the kinetics of the populations of the rotational levels we need to know the temperature dependences 
of the cross sections of collisional transitions from the j-th level of the molecule. In the case where the particles have a 
Maxwellian velocity distribution the transition cross section can be found by averaging over the velocities and the quantum 
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TABLE 4 

Transi~ 

3a~ ] 4~~ 

0,58 0,62 

5~~176 I 5~"--~3a:~ 

sy 0,042 0,033 

0,335 

5~o-~3~ 

0,2 

4ao_~.42 ~ 

I 0,925. 

] 731--;-71~ 

I 0,425 

0,4 

4~-~~ [ 58~ 

t'6"t0-a [ 8'2"t0-'z 

761:~74a 

2,5.10-a 

54~"+4ai l 61.- 50  
{ 0,65 0,54 

[ 6~o~84~ 

number J. The probability of  collision of  a molecule with an atom possessing quantum number J is given by relation 
(1.2) [4]. Neglecting partial-wave interference and replacing summation over J by integration, we can find the temperature 
dependence of  the cross section from the formula 

o o  co 

q (] --~ ] ' ,  T) ~, ~ Z (E, T) Pj..,j, (2J + 1) dJdE~ 
0 0 

Z(E, T) dE = N0d0|//--~/- e x p 2  ~ (--q-~)dE'- is the number of  collisions in unit time between the gas particles possess- where 

ing energy of relative motion in the interval E to E + dE; N o is the concentration of  atoms; d o is the gas-kinetic diameter 

of  the molecule; q is the Boltzmann constant. 

Using the method of  steepest descents [8] for averaging over E, we obtain the following expression for the cross 
section of  the transition with Aj = 0, 1, 2: 

8.~R~ l / - - g -  N d 2 . . . .  1/~ ~  ex ~ Q(], kl, k_~, T ) = ~ r - g f f -  o oVaoq l) ~jJ,,j -v [-- 3Ag'a/(qr)t/a], 

where 
A o~g(Ej,%,h_ l - E ,  , , ~12h• 

,kr~_l) I 

Discussion of Results. We have obtained selection rules for collisional rotational transitions of  the water molecule 
and have calculated the CRTP in the case of  interaction of  the molecule with an impinging heavy particle. The most re- 
markable fact is the absence of  rotational transitions between the (+) and ( - )  levels. This is due to the symmetry of  the 
molecule, whose potential is not altered by interchange of  the hydrogen atoms, nor by the prohibitions imposed by the 
law of  conservation of  parity. Thus, in conditions where the probability of  radiative transitions is much less than the 
CRTP, rotational relaxation proceeds independently at the (+) and ( - )  levels. 

It should be noted that, irrespective of  the kind of  interaction potential, the allowed transitions in the zeroth 
approximation are those with Aj = 0, determined by the main spherically symmetric term of the potential. In the first 
approximation transitions with Aj -- +1 are allowed, in the second approximation transitions with Aj = +2, etc. In this 
case the rotational transition cross sections, as Eq. (3.4) indicates, are determined by two factors: the spherical factor and 
the energy of  the rotational quantum AE i corresponding to the particular transition. The relation between the cross sections 
in this case has the form 

QJ'~J-~J ~'J ~ exp {-- 3 A~/a]/(qT)l's}, 
q ~ j  R] k- -N-0  } L o ,  - 

where A0 aj = a,AEaJ/2/~• AE ~j is the energy of  the rotational quantum corresponding to the transition with 5j = 0, 1, 2. 

In addition, the relation depends o n , r ,  which in principle must be determined from experiment. As estimates show, 
the value o f ~ r  lies in the interval 1 to 3. In the case of  interaction of  the water molecule with the He atom the preexpo- 
nential factors are [ 1 ] 

H --  He: Alt = t~4"t0 -11 erg, O --  He: AI~_ ~ 10 .9 erg. 
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In this case 
1 $ 0 1 , [3 .3 . t0 -a (S j ) /Bj  for x r = l ,  

R i S ~ ~  "~" 1 o. 0 

t3.54.t0-  (sj)/Rj 3, 
o. 2 0 

Substituting in (5.1) the values given in Table 4 we can see that the cross sections of multiquantum transitions can be 
comparable with the cross sections of transitions with Aj = 0. Hence, the picture of rotational relaxation of the water 
molecules is very complex and a detailed analysis is required for determination of the main relaxation channels. 

(5.!) 
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RESONANCE ABSORPTION OF EMISSION (10.6 pm) 

IN CO2-N 2 MIXTURES BEHIND A SHOCK FRONT 

A. B. Britan and A. M. Starik UDC 621.378.33 

An important parameter affecting the shape of the absorption (amplification)line is the collisionai width of the spec- 
tral line. In application to flows of CO2-N2-H20 (He) mixtures the accuracy of its assignment throughout the range of the 

translational temperature of the flow as the gas cools in a nozzle significantly affects the correctness of calculation of the 
amplification factor of the medium. The question of the temperature dependence of the CO 2 molecule spectrai line width 

is of particular importance in the construction of mathematical models of vibrational energy transfer, if the criterion of 
their correctness in the comparison of theory and experiment is the amplification factor. 

The value of the collisional width b c of the spectral line for the CO 2 molecule is known sufficiently accurately at 

T = 300~ for CO2-N2-He mixtures [ 1 ]. Yet, despite the fairly large number of investigations of the temperature depend- 

ence be(T) [2-5], this question still remains open. Different forms of b c = f(T) have been proposed to improve the agree- 

ment between the theoretical and experimental temperature dependences of the absorption coefficient in CO 2. For instance, 

in [2] the best agreement between theory and experiment at T = 360-400~ was obtained on the assumption that b c ~ T -3/2, 

whereas in [4] the relation b ~ 1/T was used to explain the experimental results up to T = 1600~ and the contribution 

of the "hot" transitions 823(011t -+ tt10) and R4(02 ~ t-+ t2~ was taken into account. At the same time, in [3, 5] the 

charge in absorption coefficient k with temperature could be explained on the assumption that b c ~ T - t / 2 ,  including a 

consideration of the contribution of additional transitions and the overlap of the rotational bands at p > 1 atm and T > 
1000~ It should also be noted that these investigations were mainly concerned with the relation k (T)  in pure CO2, and 

there are hardly any data for CO2-NO 2 mixtures. 

To determine the temperature dependence of the collisional width of the collision line in CO2-N 2 mixtures in the 

present investigations we considered the behavior of the absorption coefficient on the P20 (00~ -, 10~ transition of the 

CO 2 molecule behind a straight shock front for temperatures in the range 700-1250~ and N 2 content of the mixture 0-95%. 
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